In the late 1950s, a scientist named Lewis Kaplan divined a new and groundbreaking way to calculate temperature in the atmosphere for weather forecasting: by measuring the vibration of molecules at different altitudes. The hope was to do this using a brand-new technology, an Earth-observing satellite.
At the time, the only way to get a reading on atmospheric temperature was to dispatch high-altitude weather balloons, or radiosondes. Weather balloons collected critical information for weather forecasting. They still do today. But they required a lot of manpower; someone needed to fill each balloon with helium and release it, and they were sparse over the ocean. Hours often passed between measurements.
“Once you got out over the oceans, where there aren’t people to launch balloons, you were essentially in the dark, and weather forecasts weren’t very good,” said William Smith, professor emeritus at the University of Wisconsin, Madison, a distinguished professor at Hampton University in Hampton, Virginia, and a longtime leader in the field. “The satellite data was urgently needed to fill the gap over the oceans, and to fill in some of the time gaps.”
Kaplan, who worked at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and Jet Propulsion Lab in California, as well as the Massachusetts Institute of Technology, before he died in 1999, published his early ideas in a landmark 1959 paper entitled, “Inference of Atmospheric Structure from Remote Radiation Measurements.” It transformed the field of weather forecasting, and arguably, the world.
Read the rest here.